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Abstract. Confluent graphs capture the connection properties of train tracks, offering a very natural gen-
eralization of planar graphs, and—as the example of railroad maps shows—are an important tool in graph
visualization. In this paper we continue the study of confluent graphs, introducing strongly confluent graphs
and tree-confluent graphs. We show that strongly confluent graphs can be recognized in NP (the complexity
of recognizing confluent graphs remains open). We also give a natural elimination ordering characterization of
tree-confluent graphs, and we show that this class coincides with the (6, 2)-chordal bipartite graphs. Finally,
we define outerconfluent graphs and identify the bipartite permutation graphs as a natural subclass.
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1. Introduction. The area of graph drawing is concerned with visualizing graphs
meeting certain aesthetic or technical constraints [2]. Typically, the goal of graph drawing
is to minimize some parameter such as the crossing number, or, for grid drawings, the
area, the number of times an edge bends, or the total length of the edges. Among these
parameters, the crossing number has probably drawn the most attention. A crossing
number of zero corresponds to planarity, for which linear time algorithms are known,
but, in general, determining the crossing number of a graph is NP-complete [8], making
it a hard parameter to minimize. Recently, Dickerson et al. [5] suggested an extension
of the notion of planarity called confluency which, while allowing crossings, hides them
in the drawing. At the core is an idea similar to Thurston’s train tracks [10]: we allow
edges in the drawing to merge, like train tracks, into a single track. The merging device is
called a switch. Figure 1 shows, by example, how to draw complete graphs and complete
bipartite graphs confluently.

Dickerson et al. [5] identified several classes and families of graphs which are con-
fluent, including interval graphs and cographs. They also gave examples for graphs
which are not confluent (their smallest example is obtained from the Petersen graph
by removing a single vertex), and a heuristic algorithm to recognize whether or not a
graph is confluent. Interestingly, they did not study the complexity of the recognition
problem.

1 Department of Computer Science, DePaul University, Chicago, IL 60604, USA. phui@students.depaul.edu,
mschaefer@cti.depaul.edu.
2 Department of Applied Mathematics, Illinois Institute of Technology, Chicago, IL 60616, USA.
pelsmajer@iit.edu.
3 Computer Science Department, University of Rochester, Rochester, NY 14627-0226, USA.
stefanko@cs.rochester.edu.



Fig. 1. How to draw K6 and K5,3 confluently.

The first main contribution of this paper is to show that a natural strengthening of
confluency can be recognized in NP. In Section 2 we define the notions of confluency
and strong confluency. Their relationship is investigated in Section 3 by studying their
underlying train tracks. Section 4 shows that strong confluency can be recognized in NP
by giving a polynomial upper bound on the number of switches necessary to represent
a graph. We think it is not unlikely that the problem will turn out to be NP-complete.

If confluency does turn out to be NP-hard, it will be of interest to identify large, and
natural, subclasses which can be recognized efficiently. One immediate way of obtain-
ing interesting classes of confluent graphs is by taking graph classes whose definition
depends on planarity and replacing planarity with confluency. In that manner we obtain
tree-confluent and outerconfluent graphs. Our second main contribution is the study of
tree-confluent graphs: graphs whose confluent drawings are treelike. In Section 5 we
give an elimination order characterization for tree-confluent graphs, and show that tree-
confluency is equivalent to several other well-known graph properties. In Section 6 we
initiate the study of outerconfluent graphs, defining the natural subclass of outerconfluent
bipartite graphs, which turn out to be exactly the bipartite permutation graphs.

2. Train Tracks and Confluent Drawings

DEFINITION 1. A curve is a continuous mapping of [0, 1] into the Euclidean plane; we
often identify a curve and its image. A curve is smooth if it is differentiable (intuitively,
it cannot make sharp turns). A smooth curve that does not self-intersect is called locally
monotone (or embedded) [5].

DEFINITION 2. A train-track drawing with vertices V and switches S is a closed subset
D of the Euclidean plane such that

– V and S are disjoint,
– there is an injective mapping of V

.∪ S into D (we identify a point in V
.∪ S with its

image),
– any curve in D not containing a switch must be smooth,
– any two overlapping curves in D must have a common tangent at any point of overlap;

that is, they have to join smoothly.

A curve in a train track drawing that shares exactly its two endpoints with V
.∪ S is called

a branch.
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Fig. 2. K4 or K4 − e?

The main difference between a train-track drawing and a traditional drawing lies in
the interpretation of adjacency and the presence of switches. The notion of a train-track
drawing allows us to derive two graph-drawing concepts.

DEFINITION 3. We call a graph G = (V, E) confluent, if there is a train-track drawing
D on V such that uv ∈ E if and only if there is a locally monotone curve in D with
endpoints u and v that does not contain any other points of V . In this case we call D a
confluent drawing of G.

For an example, consider the train-track drawing in Figure 2. We can easily trace
locally monotone curves connecting all pairs of vertices—with the exception of a and
b. There is a smooth curve connecting a to b, but it is not locally monotone, since it has
to self-intersect. Hence, the train-track drawing in Figure 2 is a confluent drawing of a
K4 − e.

When tracing a train-track drawing visually, the requirement to avoid self-intersections
seems to force a reader to backtrack to determine whether two points are connected. Re-
moving this requirement leads to the following notion:

DEFINITION 4. We call a graph G = (V, E) strongly confluent, if there is a train-track
drawing D on V such that uv ∈ E if and only if there is a smooth curve in D with
endpoints u and v that does not contain any other points of V . In this case we call D a
strongly confluent drawing of G.

Using this new definition, we would say that the train-track drawing in Figure 2 is a
strongly confluent drawing of a K4.

REMARK 1. The notion of confluency was introduced by Dickerson et al. in [5]; at first
glance it might seem that confluency is a stronger requirement than strong confluency.
The opposite, however, is true; every strongly confluent graph is confluent (as we will
see in Corollary 1), and there is a confluent graph that is not strongly confluent.

By definition, any point of D at which several curves combine is a switch. A switch
has two sides, each with an arbitrary number of incoming curves. Every such switch can
be replaced by a series of simple switches, where a simple switch is a switch in which
two curves merge into a single curve. For example, the drawing of K6 in Figure 1 uses



Fig. 3. How to draw K5,3 using only simple switches.

simple switches, whereas the drawing of K5,3 in the same figure uses a single switch
which is not simple. Figure 3 shows how to draw K5,3 using only simple switches.

For the rest of the paper we use “switch” to mean simple switch unless explicitly
stated otherwise.4

3. Train Tracks. We want to capture the combinatorial structure of a train-track draw-
ing D in graph-theoretic terms, abstracting from the particular embedding. To this end,
we call the triple H = (V .∪ S, F, o) a train track if the following hold:

(i) The nodes of H are of two types, the vertices V and the switches S,
(ii) switches have degree 3,

(iii) F is the set of edges of H (branches in the drawing),
(iv) o maps S to V

.∪ S such that o(s) is one of the three neighbors of s.

We think of o(s) as determining the orientation of the switch s: if we enter the switch
s coming from o(s), it forks into two branches. A curve in a train track drawing now
corresponds to a walk5 in the train track that respects the orientation of the switches in
the sense that for every part (u, s, v) of the walk, s is a switch and o(s) is either u or
v (and u and v are different from each other). We call such a walk acceptable. We can
now rephrase our notions of confluency and strong confluency in terms of train tracks.

LEMMA 1. A graph G = (V, E) is confluent if there is a planar train track H such that
uv ∈ E if and only if there is an acceptable path from u to v in H . The graph is strongly
confluent if there is a planar train track H such that uv ∈ E if and only if there is an
acceptable walk from u to v in H .

PROOF. Consider a train-track drawing D with vertices V and switches S. Construct a
train track H as follows: V

.∪ S are the nodes of H . Include an edge uv in the edge-set
F of H if in D there is a curve from u to v that does not pass through any vertices or
switches. We assumed that switches are simple, hence there are three branches leaving
each s. Let o(s) be the endpoint (other than s) of the edge corresponding to the branch

4 In the topological literature on train tracks, simple switches are called trivalent or generic.
5 A walk is a sequence of vertices adjacent in the order of the sequence, with repetitions allowed. A path is a
walk without repeating vertices.



that extends the other two branches smoothly. Then H is a planar train track in which
every acceptable walk corresponds to a smooth curve in D and every acceptable path
corresponds to a locally monotone curve.

REMARK 2. Given a train track, the graph it represents can be found in polynomial
time. In the case of strong confluency this is obvious; for confluency the problem can be
reduced to a matching problem [6].

THEOREM 1. If G = (V, E) is strongly confluent, then it is represented by a planar
train track H = (V

.∪ S, F, o) such that ab ∈ E if and only if there is an acceptable
path Pab in H from a to b.

PROOF. If G = (V, E) is strongly confluent, then there is a planar train track H =
(V

.∪ S, F, o) representing it.
We modify H slightly. Consider a switch s ∈ S, and let its neighbors be u, v, and w

such that o(s) = u.
We call the switch s ambiguous, if there is an acceptable walk from s to s that begins

with (s, o(s)) and ends with (o(s), s). Construct a new train track H ′ from H as follows:
replace every ambiguous switch s of H connected to u, v, and w by three switches as
shown in Figure 4 allowing immediate passage from u, v, and w to any other among
them.

We claim that there is an acceptable walk from a to b in H if and only if there is an
acceptable path from a to b in H ′. This proves the statement of the theorem.

First, suppose there is an acceptable path from a to b in H ′. Follow that path; as long
as the path uses vertices and switches in H we can perform the same walk in H . Assume
then that the path uses a switch of H ′ not in H . This switch must have been introduced
to replace an ambiguous switch s in H . Let the neighbors of s in H be u, v, and w with
o(s) = u. If the path uses the connection between u and v or u and w, then we can use s
in H to traverse either usv or usw (both of which are acceptable). If, however, the path
uses the connection between v and w in H ′, then in H we have to interpolate the walk
from s to s (via o(s) = u). This results in an acceptable walk between v and w in H .
Continuing this process, we obtain an acceptable walk in H from a to b.

To prove the reverse direction, suppose there is an acceptable walk from a to b in H .
Then that same walk is an acceptable walk from a to b in H ′. Hence, we can consider an
acceptable walk Wab from a to b in H ′ of minimal length. We will show that this walk
is in fact a path.

u

v

w

Fig. 4. An ambiguous switch replaced by three switches.



Since Wab is acceptable, all its interior nodes have to be switches. Suppose the walk
contains a repetition of some switch s. Let s be the very first switch along Wab that is
repeated, and let it be connected to nodes u, v, and w, and o(s) = u. If Wab enters
s along the same edge both times, we could simply eliminate the walk between s and
s. The same is true, if the walk enters s once from v and once from w, since it has to
continue to u in both cases. Since Wab was chosen of minimal length, neither of these
two cases could have occurred. Up to symmetry (between v and w) this leaves us with
the following three cases:

(i) the path enters s from v the first time, and from u the second time, leaving alongw,
(ii) the path enters s from v the first time, and from u the second time, leaving along v,

(iii) the path enters s from u the first time, and from v the second time.

Cases (ii) and (iii) cannot actually occur, since in both cases s would not have been the
first switch along Wab that is repeated (note that vertices cannot be repeated). Hence, we
are in case (i). In this case, s has to be one of the three replacements of an ambiguous
switch in H with v andw being the remaining two. However, this means in H ′ we could
have directly proceeded from v tow and would not have gone through s at all (since Wab

is of minimal length). Hence, none of the switches in Wab can repeat, and it is indeed a
path.

Theorem 1 and Lemma 1 immediately imply a relationship between the two notions
of confluency we introduced.

COROLLARY 1. Any strongly confluent graph is confluent.

The inclusion is strict; consider, for example, the graph represented by the confluent
drawing in Figure 5. (The even-indexed vertices induce a graph H in which 4 and 6 have
neighbors {2, 8, 10, 12} and (10, 8, 2, 12) is an induced path subgraph.) By adding a
vertex 0 adjacent to all odd-indexed vertices, we obtain a graph G in which the switches
for G−{0}must all be in (or out of) the circle. G is confluent but not strongly confluent,
as can easily be checked.
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Fig. 5. Construction for graph that is confluent but not strongly confluent. (Left) Train-track drawing of G;
(right) G (strongly confluent: with dashed edge; confluent: without).



4. Strong Confluency in NP

THEOREM 2. If G = (V, E) is confluent, then there is a train track H representing G,
and there are acceptable paths Pe for every edge e ∈ E such that the following condition
holds:

If P is a longest path contained in both some Pe and some Pf (e, f ∈ E), then P
is a single edge.

PROOF. We need a measure of overlap between two paths Pe and Pf . To this end, we
introduce the numbers

oef :=
∑

P maximal subpath of Pe∩Pf

|P|2.

With this we can establish the following claim:

Suppose H is chosen to minimize the number oef . In that case, if P is a path
contained in both Pe and Pf , then P is a single edge.

If the conclusion of the claim is false, there is a path (u, x, v) belonging to both Pe and
Pf . Let y be the endpoint of the third edge incident to x ; without loss of generality, we
can assume that o(x) = u. Since Pe and Pf are paths, the edge xy cannot belong to either
of them. Modify H as follows: remove edges ux and xv and add two new vertices u′, v′

and edges uu′, u′v′, v′v, u′x , and xv′; set o(u′) = u, o(v′) = v, and o(x) = u′. Modify
Pe and Pf such that one of them uses (u, u′, x ′, v′, v) and the other (u, u′, v′, v). This
will split the maximal common subpath of Pe ∩ Pf containing (u, x, v) into two parts.
Since (i + j)2 > i2 + j2 for i, j ≥ 1, this strictly reduces oef showing that H did not
minimize it. This establishes the claim.

In the modification made to H in the proof of the claim, we can route any other Pg

through (u, u′, v′, v) if it used (u, x, y) or through (u, u′, x, y) if it used (u, x, v); in
either case the length of another Pg path will be increased by at most one.

More importantly, if any maximal subpath of Pg and Ph is an edge, then the modi-
fication to H will not change that: if Pg and Ph were affected by the modification and
shared a single edge on the vertices u, x , v, and y, it must have been ux , and one of Pg

and Ph must have used xv and the other xy; hence, after the modification they will only
share uu′.

Let e1 f1, e2 f2, . . . , ek fk be an ordering of all pairs of distinct edges of G. The above
observation immediately implies that if we choose H so as to minimize (in lexicographic
ordering) the vector

(oe1 f1 , oe2 f2 , . . . , oek fk ),

then any paths Pe and Pf intersect in isolated edges.

For the rest of this section we will concentrate on strongly confluent graphs. Because
of Corollary 1, we can still apply Theorem 2 in that case, concluding that overlap between
a Pe and a Pf consists of non-adjacent edges. Moreover, these overlaps between Pe and
Pf correspond to crossings in a planar drawing of H . That is, if we have the path
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Fig. 6. Lifting a path (in a strongly confluent representation).

(ue, s, t, ve), part of Pe and (u f , s, t, v f ), part of Pf then ue and ve cannot be on the
same side of st in the planar drawing of H , since otherwise we could have reduced oef

by having two separate paths (ue, ve) and (u f , v f ) as shown in Figure 6.
There is one scenario that would prohibit the application of the move shown in

Figure 6, namely if there was a third Pg making use of the edge st . This, however, is not
possible, since one pair from Pe, Pf , Pg would share a path of length ≥ 2.

REMARK 3. Note that this operation would not be valid if the representation was just
confluent, since lifting the path could introduce new connections between vertices not
possible before.

Our goal is to show that we can assume the number of switches in H to be polynomial
in the number of vertices. To this end we equip the train track with an edge labeling that
contains connectivity information.

Given a train track H = (V .∪ S, F, o) for G = (V, E) we define a labeling of the
directed edges of H as follows:

	(u, v) = {a ∈ V : there is an acceptable walk from a to v in H
passing through (u, v)}.

From the definition it follows that 	 is the minimal labeling fulfilling

(i) a ∈ 	(a, u) for any edge (a, u) ∈ F ∩ (V, V
.∪ S),

(ii) NG(a) =
⋃
(u,a)∈F 	(u, a) for any a ∈ V , where NG(a) = {b: ab ∈ E} is the

neighborhood of a in G,
(iii) for any switch s ∈ S and its neighbors u = o(s), v, w:

	(u, s) ⊆ 	(s, v) ∩ 	(s, w) and 	(s, u) ⊇ 	(s, v) ∪ 	(w, s).

By the results proved so far we know that if G = (V, E) is strongly confluent, then
there is H = (V .∪ S, F, o) such that ab ∈ E if and only if there is an acceptable path
Pab from a to b in H .

LEMMA 2. If G = (V, E) is strongly confluent, then it is represented by a train track
H with O(|V |)6 vertices and switches.

PROOF. Let uv ∈ E . Consider a path Puv in H , whose inner vertices are all switches,
and the function 	(−→e ) as we move the directed edge−→e along Puv from u to v. This yields
a monotone function, namely, if−→e occurs before

−→
f on Puv and both edges are directed

toward v, then 	(−→e ) ⊆ 	(−→f ). Therefore, 	(−→e ) can take on at most |V | + 1 different
values along Puv . Similarly, if we move an edge←−e directed toward u along Puv from u



Fig. 7. How to swap two parallel crossings.

to v, the corresponding label sets are monotonously decreasing, and, hence, also take at
most |V | + 1 different values along Puv . Consequently, the expression (	(−→e ), 	(←−e ))
can change value less than 2(|V | + 1) times as we travel along Puv from u to v.

For each uv ∈ E we color those switches at which (	(−→e ), 	(←−e )) changes red and
the remaining switches blue. Note that at most (2|V | + 1)|E | switches are colored red.
We call the maximal segments of Puv that do not contain red switches blue segments.
There are at most 4(|V | + 1)|E | blue segments. We will show that there is a drawing
such that any two blue segments intersect at most once. Hence there is a drawing with
at most (2|V | + 1)|E | + 2(4(|V | + 1)|E |)2 = O(|V |6) switches.

Consider two edges e and f in H that are adjacent crossings of a blue segment P
with other blue segments. There are two possible scenarios depending on whether or not
the crossings are parallel. (As earlier, the sharp angles represent the forking part of a
switch, and thus define o.) Figure 7 shows how the order of two parallel crossings can be
swapped. We can use a similar move for non-parallel crossings, as shown in Figure 8.

Note that in both cases we can extend the labeling of H to the newly introduced edges
so that the graph represented by H remains the same: we simply label the new edges
with (	(−→e ), 	(←−e )).

Suppose that two blue segments P and R cross more than once. Let e1, e2 be crossings
of P and R such that there are no crossings of P and R between e1 and e2 on R. There
may be crossings of P and R between e1 and e2 on P . Label them by i if after cutting
R between e1 and e2 they would be in the same component of R as ei . There is a pair
of neighboring crossings f1, f2 labeled by 1, 2, respectively. Using the swap moves on
edges intersecting R we can make e1, e2 adjacent on R and then shortcut P , eliminating
half of the intersections created by the swap moves. Similarly using the swap moves on

Fig. 8. How to swap two non-parallel crossings.



Fig. 9. A tree-like train track drawing.

edges intersecting P we can make f1, f2 adjacent on P and then shortcut R, eliminating
half of the intersection created by the swap moves. In one of the cases we decrease the
total number of intersections while preserving the property that any two paths intersect
in paths of length 1. Hence there is a train track in which any two blue segments intersect
at most once.

COROLLARY 2. Strong confluency can be tested in NP.

PROOF. Lemma 2 shows that if G is strongly confluent, then there is a train track
representing G of size polynomial in |G|. In NP we can guess any such train track and
verify that it represents G.

5. Tree-Confluent Graphs. We call a train-track drawing D tree-like if it does not
contain a closed curve (not necessarily smooth or locally monotone). For example,
Figure 9 shows a tree-like train-track drawing. On the other hand, Figure 1 shows a
train-track drawing representing K6 which is not tree-like. We call a confluent graph that
can be represented by a tree-like train-track drawing tree-confluent.6 We will see later
that all tree-confluent graphs are bipartite, so there is no tree-like train-track drawing
representing K6.

In graph theoretic terms, the underlying train track of a tree-confluent graph has to
be a tree.

LEMMA 3. A graph is tree-confluent if and only if it is represented by a train track that
is a tree.

6 Since a tree-like train-track drawing does not contain closed curves, the notions of confluency and strong
confluency coincide, so we can use the term “represent” without ambiguity.



The proof of the lemma is immediate. We now give a characterization of tree-confluent
graphs in terms of a vertex elimination ordering. This characterization will allow us to
identify tree-confluent graphs as another well-known graph class.

THEOREM 3. A graph is tree-confluent if and only if repeatedly removing

(i) vertices of degree 1, and
(ii) vertices u such that there is another vertex v with N (u) = N (v) �= ∅
leads to the trivial graph (containing only a single vertex).

PROOF. Call vertices of type (i) or (ii) good. Observe that if G is tree-confluent then it
will still be tree-confluent after the removal of a good vertex. Furthermore, if G is not
tree-confluent, it cannot become tree-confluent by removing a good vertex: if G − {v}
were tree-confluent and v has degree 1 in G, then it has degree 1 in the underlying train
track, hence G is tree-confluent; similarly if G − {v} is tree-confluent, and G contains
another vertex u with N (u) = N (v), then we can replace u in the train track for G−{v}
by a switch that branches to u and v, showing that G is tree-confluent. (Note that G does
not contain the edge uv, since N (u) = N (v).)

Since the trivial graph is tree-confluent, this observation implies that any graph that
can be reduced to the trivial graph by removing good vertices is tree-confluent.

Furthermore, for the other direction, the observation shows that the order of removal
is irrelevant, and it is sufficient to show that if G is tree-confluent, there is a good vertex.
As a matter of fact, we will show that there are at least two good vertices (unless G
consists of a single vertex).

To that end, fix a tree-confluent drawing of G. By adding switches, if necessary, we
may assume that each vertex of G has exactly one incident branch in the drawing. Then
if T is the tree-like train track that represents G, its leaves S are precisely the vertices of
G. Now either T is a star (in which case we are done) or T − S has at least two leaves
x, y; x and y each have two neighbors that are leaves in T . If either of x or y is a switch
branching into two leaves of S, those two leaves are both removable. Otherwise, both x
and y are adjacent to a vertex in S of degree one. In either case, we have at least two
good vertices.

We required vertices of type (ii) to have nonempty neighborhoods, obtaining graphs
that are tree-like also in the sense of being connected. If we allow the removal of isolated
vertices, the resulting graphs will be unions of tree-confluent graphs, or forest-confluent
graphs.

In [9] Golumbic and Goss introduced the well-known class of graphs known as the
chordal bipartite graphs, which are the bipartite graphs in which every cycle of length
at least 6 contains a chord (that is, there are no induced cycles of length 6 or greater).

Removing a vertex of degree 1 or a vertex u such that there is another vertex v for
which N (u) = N (v) from a graph does not change the property of a graph being chordal
bipartite. Hence every forest-confluent graph is chordal bipartite. As a matter of fact, we
can show more. A graph is (6, 2)-chordal if every cycle of length at least 6 contains at
least two chords [4].



THEOREM 4. The forest-confluent graphs are precisely the (6, 2)-chordal bipartite
graphs.

This class of graphs has other well-known characterizations; for example, the (6, 2)-
chordal bipartite graphs are just the domino-free chordal bipartite graphs, where a domino
is a bipartite graph consisting of a C6 with a single chord.

A graph is distance-hereditary if the distance between two vertices does not change
if any other vertex is removed (unless the distance becomes infinite). It turns out that the
forest-confluent graphs are the bipartite distance-hereditary graphs.

This follows from a result of Bandelt and Mulder [1, Theorem 1], who showed that
a graph is distance-hereditary if and only if it has an elimination ordering allowing the
removal of vertices of degree 1 and the identification of vertices u and v for which
N (u)− {v} = N (v)− {u} (such vertices are called twins). Twins generalize our notion
of two vertices having the same neighborhood by allowing an edge between the twins (in
which case the twins are called true twins). Since true twins are impossible in a bipartite
graph, this shows the equivalence of being bipartite distance-hereditary and being forest-
confluent. Together with another result from Bandelt and Mulder’s paper [1, Theorem 2],
which implies that the (6, 2)-chordal bipartite graphs are the bipartite distance-hereditary
graphs, this implies Theorem 4.

However, we decided to include a simpler, direct proof of Theorem 4 keeping the
paper self-contained.

Recall that a vertex v is good if it is either of degree 1 or there is another vertex u
such that N (u) = N (v) �= ∅. We showed that every tree-confluent graph contains at
least two good vertices unless it is trivial. Note that the same is true for forest-confluent
graphs, since if the graph is disconnected, each component has at least one good vertex.

Any induced subgraph of a forest-confluent graphs is forest confluent (this follows
from the elimination characterization). If G and H are forest-confluent graphs that share
a single vertex, then their union is clearly forest-confluent as well.

For the proof of the Theorem 4 we make use of the following lemma:

LEMMA 4 [3, Exercise 2.2.12]. If S1, . . . , Sn are pairwise different subsets of {1, . . . , n}
then there is an x in {1, . . . , n} such that the sets S1−{x}, . . . , Sn−{x} are still pairwise
different.

PROOF. Draw an edge between two sets if they differ by exactly one element. Label
each edge by the element on which the sets differ. Take a maximal spanning forest of the
resulting graph. The forest has at most n − 1 edges, hence there is at least one element
x that is not mentioned.

PROOF OF THEOREM 4. We show that the forest-confluent graphs are precisely the
domino-free chordal bipartite graphs, which are clearly equivalent to the (6, 2)-chordal
bipartite graphs.

By the elimination characterization it is immediate that every forest-confluent graph
is chordal bipartite and domino-free.

For the other direction, suppose that there exists a chordal bipartite, domino-free graph
that is not forest-confluent. Let G = (X ∪Y, E) be a minimal such graph. For any vertex



v, G−v is clearly chordal bipartite and domino-free, so G−v must be forest-confluent.
Hence v cannot be good, because then G would be forest-confluent as well.

Similarly, G must be 2-connected: If it were disconnected or had a cut-vertex, it would
be the union of forest-confluent subgraphs such that G would be forest-confluent as
well.

CLAIM. If G has two vertices u and v such that d(u) = d(v) = 2, then u and v cannot
share a common neighbor.

Suppose u and v had a common neighbor x . Since there are no good vertices, N (u) �=
N (v). Therefore in G − x the shortest u, v-path has length at least four (there is such a
path, since G is 2-connected). This gives us a cycle of length at least six in G. In this
cycle all chords are incident to x (because u and v have degree 2, and we chose a shortest
path from u to v). Consequently, there is a chord between x and every other vertex of
the path from u to v resulting in an induced domino, which is a contradiction.

Since we know that N (u) �= N (v) for all u, v in Y (otherwise G would have a good
vertex), by Lemma 4 there is an x in X such that still N (u) − x �= N (v) − x for all
u, v in Y . By minimality, G − x is forest-confluent, so G is trivial (contradiction) or G
contains good vertices a, b. Then a, b each have degree at most one in G − x , and since
G has no good vertices, dG(a) = dG(b) = 2. However, x is a common neighbor of a, b,
which contradicts the claim.

6. Outerconfluent Graphs. In analogy with outerplanar graphs we can define
(strongly) outerconfluent graphs to be those graphs which have (strongly) confluent
drawings in which all vertices are on the boundary of the unbounded face. As in the
case of confluency there are examples of graphs that are outerconfluent but not strongly
outerconfluent; for an example, see the confluent drawing in Figure 5.

Dickerson et al. [5] showed in effect that all cographs are strongly outerconfluent,
thereby also showing that strong outerconfluency is a strict superclass of tree-confluency.
It does not seem unlikely that outerconfluent graphs can be recognized in polynomial
time. While this remains an open problem, we can recognize some interesting subclasses
of outerconfluent graphs.

DEFINITION 5. A bipartite graph G = (X .∪ Y, E) is outerconfluent bipartite if it has
an outerconfluent drawing in which the closure of the unbounded face can be partitioned
into two connected regions, one containing X and the other Y .

Equivalently, there is an outerconfluent drawing of G in which X and Y are placed
on two different parallel lines, and the drawing lies entirely between the two lines.

REMARK 4. Any outerconfluent bipartite graph is outerconfluent and bipartite, but the
reverse is not true: C6 is outerconfluent and bipartite, but it cannot be drawn with the
three vertices of the even partition on one line and the three remaining vertices on a
parallel line, since every (nontrivial) switch would lead to a C4.



It turns out that the outerconfluent bipartite graphs are just the bipartite permutation
graphs; we will not define this graph class here, but give an equivalent characterization
which is more useful for our proof.

LEMMA 5 [12]. A bipartite graph G = (X .∪ Y, E) is a bipartite permutation graph if
and only if it admits a strong ordering; that is, there are orderings of X and Y such that
for all s <X s ′ ∈ X and t <Y t ′ ∈ Y ,

st ′, s ′t ∈ E ⇒ st, s ′t ′ ∈ E .

THEOREM 5. The outerconfluent bipartite graphs are precisely the bipartite permuta-
tion graphs.

PROOF. We will show (i) that every bipartite permutation graph is outerconfluent bi-
partite (even in the strong sense), and (ii) that every outerconfluent bipartite graph is a
bipartite permutation graph, thereby also proving that strongly outerconfluent bipartite
and outerconfluent bipartite coincide.

To show inclusion (i) let G = (X .∪ Y, E) be a bipartite permutation graph. Arrange
the points of X and Y on two parallel lines in the order suggested by the strong ordering.
Furthermore, include a line segment from s ∈ X to t ∈ Y if st ∈ E . By adjusting the
points slightly, we can assume that no two line segments intersect in more than one point.
If such an intersection point lies strictly between the two parallel lines, we replace it by
two switches forking upward and downward toward the endpoints of the line segments.
We claim that the resulting drawing is a strongly confluent drawing of G. Obviously, all
edges of E are realized by the drawing; the question is, whether the drawing realizes any
edge not in E . Let st be not in E , but realized by the drawing. Following the drawing
from s to t , let st ′ be the the first line-segment traversed. Without loss of generality, we
can assume that t <Y t ′. Similarly, let s ′t be the last line-segment traversed when going
from s to t . If s <X s ′, then Lemma 5 allows us to conclude that st ∈ E (since st ′ ∈ E
and ts ′ ∈ E). Therefore, assume that s ′ <X s. Now the connection from s to t has to
cross the (imaginary) line from s to t moving downward from the right of s to the left of
t . Hence, there has to be some line-segment xy with s ′ <X s <X x and y <Y t <Y t ′.
However, xy then intersects both st ′ and s ′t , allowing us to apply Lemma 5 repeatedly
to infer the presence of both xt and sy, and also, therefore, st which we precluded by
assumption.

For inclusion (ii) we assume we are given an outerconfluent bipartite drawing of a
graph G = (X

.∪ Y, E) lying between two parallel lines containing sets X and Y . We
claim that the ordering of the points on the lines is a strong ordering of G. Suppose that
s <X s ′ ∈ X , t <Y t ′ ∈ Y , s connects to t ′, and s ′ connects to t . We can redraw the
graph such that the connection from s to t ′ is a straight line. Now follow the connection
from t to s ′. It has to cross the line st ′ at some point using a switch. This switch cannot
merge t and s toward t ′, since that would connect t to t ′; hence the switch merges t
and t ′ toward s and therefore connects t to s. Similarly, s ′ is connected to t ′, showing
that G is a bipartite permutation graph with respect to the ordering of the points on the
lines.



7. Open Problems. While we have shown that strong confluency can be recognized
in NP, we currently have no such result for confluency. Although the two notions are
very similar, their combinatorial nature seems to be quite different. At this point we
cannot even rule out the possibility that a confluent graph needs an exponential number
of switches to be realized (although that would not necessarily affect membership in NP,
as witnessed by the example of string graphs [11]).

Identifying large classes of confluent graphs remains a challenging task. We have
suggested the notion of tree-confluency and identified it as a well-known graph class
that can be recognized in linear time and for which there are other efficient algorithms
(see [4]). The same result was obtained independently Eppstein et al. [7]. That paper also
introduced a larger class of graphs called delta-confluent which are just the tree-confluent
graphs with delta devices (see Figure 4). As it turns out, the delta-confluent graphs are
precisely the distance-hereditary graphs.

We also suggest the further study of outerconfluent graphs. We showed that there
is a natural subclass, the outerconfluent bipartite graphs, which coincides with the bi-
partite permutation graphs. This should only be a first step toward an understanding of
outerconfluency.
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